Hobby kernel + userspace, built mostly from scratch. Composited GUI, dynamically linked ELF binaries, networking, Python applications, and more. https://toaruos.org/
|
5 years ago | |
---|---|---|
apps | 5 years ago | |
base | 5 years ago | |
boot | 5 years ago | |
kernel | 5 years ago | |
lib | 5 years ago | |
libc | 5 years ago | |
linker | 5 years ago | |
modules | 5 years ago | |
util | 5 years ago | |
.gitignore | 5 years ago | |
LICENSE | 5 years ago | |
Makefile | 5 years ago | |
README.md | 5 years ago |
ToaruOS-NIH is a distribution of ToaruOS which contains no third-party components. Its bootloader, kernel, modules, C library, and userspace applications are all written by the ToaruOS development team and direct contributors.
This distribution aims to eventually replace the core of the mainline ToaruOS, with the various third-party components building against our own C library. This is a long-term project, and developing the C library to the point where it is useful for this purpose is not expected to be completed for quite some time.
Releases are occasionally posted on GitHub, and nightlies are available from toaruos.org.
It is recommended that you run ToaruOS-NIH in an emulator - specifically Qemu or VirtualBox, though some testing has been done in VMware Workstation (reasonable, but missing driver support) and Bochs (not recommended).
1GB of RAM and an Intel AC'97 sound chip are recommended:
qemu-system-i386 -cdrom image.iso -serial mon:stdio -m 1G -soundhw ac97,pcspk -enable-kvm -rtc base=localtime
You may also use OVMF with the appropriate QEMU system target. Our EFI loader supports both IA32 and X64 EFIs:
qemu-system-x86_64 -cdrom image.iso -serial mon:stdio -m 1G -soundhw ac97,pcspk -enable-kvm -rtc base=localtime \
-bios /usr/share/qemu/OVMF.fd
qemu-system-i386 -cdrom image.iso -serial mon:stdio -m 1G -soundhw ac97,pcspk -enable-kvm -rtc base=localtime \
-bios /path/to/OVMFia32.fd
ToaruOS should function either as an "Other/Unknown" guest or an "Other/Uknown 64-bit" guest with EFI.
All network chipset options should work except for virtio-net
(work on virtio drivers has not yet begun).
It is highly recommended, due to the existence of Guest Additions drivers, that you provide your VM with at least 32MB of video memory to support larger display resolutions - especially if you are using a 4K display.
Ensure that the audio controller is set to ICH AC97 and that audio output is enabled (as it is disabled by default in some versions of VirtualBox).
Keep the system chipset set to PIIX3 for best compatibility. 1GB of RAM is recommended.
Support for VMWare is experimental.
As of writing, the following configuration has been tested as functioning:
firmware
value to efi
in the VMX file. The BIOS loader has known issues under VMWare.Using Bochs to run ToaruOS is not advised; however the following configuration options are recommended if you wish to try it:
pcivga
device is enabled or ToaruOS will not be able to find the video card through PCI.e1000
network device (this has never been tested).sync=realtime, time0=local, rtc_sync=1
are recommended.All source code for the entire operating system is included in this repository.
The NIH kernel is essentially the same as the mainline kernel, though the PCI vendor and device ID list has been replaced with our own slimmed down version. This was the only third-party element of the ToaruOS kernel. Additionally, the headers for the kernel have been relocated from their original directories to facilitate a cleaner build. The NIH kernel should be considered the latest version of the ToaruOS kernel.
Mainline ToaruOS shipped with GRUB, which provided a multiboot-compatible ELF loader. To that end, our native bootloader also implements multiboot. However, as writing a feature-complete bootloader is not a goal of this project, the native bootloader is very limited, supporting only ATAPI CDs on systems with El Torito "no-emulation" support. It is not guaranteed to work on real hardware, but has been tested in QEMU, Bochs, VirtualBox, and VMware Player.
The userspace includes a work-in-progress C standard library, the ToaruOS native libraries, the compositor (using only in-house graphics routines), and various other first-party utilities and applications.
First, ensure you have the necessary build tools, which are mostly the same as mainline ToaruOS: yasm
, xorriso
, genext2fs
(with Debian patches), python
, mtools
(for building FAT EFI payloads) and gnu-efi
to build the EFI bootloader (I'll explore implementing necessary headers and functionality myself in the future, but for now just pull in gnu-efi and make my life easier).
Run make
and you will be prompted to build a toolchain. Reply y
and allow the toolchain to build.
No ABI or API compatibility is guaranteed through the development of ToaruOS-NIH. Until a larger corpus of third-party software is ported to our new C library, APIs may change to improve or simplify library use, or to fix bugs. Even kernel ABI compatibility is not guaranteed as system calls are improved or made more compliant with expectations of POSIX or the C standard.
ToaruOS's kernel is entirely in-house. Its userspace, however, is built on several third-party libraries and tools, such as the Newlib C library, Freetype, Cairo, libpng, and most notably Python. While the decision to build ToaruOS on these technologies is not at all considered a mistake, the possibility remains to build a userspace entirely from scratch.
Many of our initial goals have been met, including sufficient C library support to port Python 3.6.
Our current unmet goals include:
base/usr/include
, as well as graphical resources for the compositor and window decorator.